If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7^2+b^2=11^2
We move all terms to the left:
7^2+b^2-(11^2)=0
We add all the numbers together, and all the variables
b^2-72=0
a = 1; b = 0; c = -72;
Δ = b2-4ac
Δ = 02-4·1·(-72)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*1}=\frac{0-12\sqrt{2}}{2} =-\frac{12\sqrt{2}}{2} =-6\sqrt{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*1}=\frac{0+12\sqrt{2}}{2} =\frac{12\sqrt{2}}{2} =6\sqrt{2} $
| 0.02(n-450)=103 | | 5+5n=7n+1 | | -2c+9=39 | | 136=12x-20 | | 3x-2=-5x+3 | | 3/1+a=4/5 | | -9−4g=-5g | | 2.25x+5=13.5x+4 | | -7+6u=-6+5u | | 14-4m=6=(m-5) | | 5(3=2x)=15 | | 3m+12=2m+4 | | 4+10s=9s | | 3.1x-8.8=16 | | 7(-6-4)=21+7r | | -2u+10=20 | | -7n+2=10+n | | 4h−4=12 | | 3h−5=10 | | 5|3x-6|+9=144 | | 2x-3=1x/3 | | 7x+1/16=1/2 | | y/11+2=-8 | | .18x+16=4+.55x | | 2x-6=+6 | | .18+16=4+.55x | | y/11+2=8 | | 4((2w-1)=-10(w-5) | | 6x+26=-7x | | 9+7j=8j | | -w=-4+3w | | 32-(3c+4=2(c+5)+c |